Pulmonary haemorrhage following Russell’s viper (Daboia russelii) envenoming in Sri Lanka

RATHNAYAKA MUDIYANSELAGE MITHUN KAUSHIKA NAMAL RATHNAYAKA1,2,3*, PANWILAHENA ELLAWATTE ANUSHA NISHANTHI RANATHUNGA4, SENANAYAKE ABEYSINGHE MUDIYANSELAGE KULARATNE5

1Intensive care unit, Teaching Hospital, Ratnapura, Sri Lanka
2Postgraduate Institute of Medicine (Clinical Pharmacology and Therapeutics), University of Colombo, Sri Lanka
3Department of Veterinary Pathobiology, Faculty of Veterinary Medicine &Animal Science, University of Peradeniya, Sri Lanka
4Medical Unit, Teaching Hospital, Ratnapura, Sri Lanka
5Department of Medicine, Faculty of Medicine, University of Peradeniya, Sri Lanka

Abstract

Background: Out of four species of snakes in the family Viperidae in Sri Lanka, Russell’s viper is widely distributed all over the country and causes severe envenoming manifestations such as coagulopathy and neuroparalysis. Most snakebite deaths occur due to its bites in Sri Lanka and systemic bleeding is the most trivial complication associated with coagulopathy caused by these snakes. Pulmonary hemorrhage is one effect which is rarely reported.

Case presentation: A 30-year-old previously well male was bitten by a Russell’s viper on his left foot and had mild local pain, moderate swelling and two fang punctures. Two hours after the bite, he developed vomiting with bilateral ptosis and external ophthalmoplegia, so he was given 20 vials of polyvalent antivenom after the prophylactic therapy. Later, he had prolonged whole clotting test associated with hematuria, followed by respiratory failure for which he was intubated. He also had blood stained endotracheal tube secretions and pulmonary hemorrhage, revealed by high-resolution computed tomography of the chest. He also developed acute kidney injury, rhabdomyolysis and deep vein thrombosis. He completely recovered and was discharged on day 23.

Discussion: Snake venom serine proteinase, metalloprotease, snaclce and L-amino acid oxidase are hemotoxins of Russell’s viper venom that cause venom induced consumption coagulopathy and hemorrhage. Metalloprotease has a direct action on lung microvasculature causing pulmonary hemorrhage.

Conclusion: Severe fatal systemic manifestations like pulmonary hemorrhage may occur rarely following Russell’s viper bites.

Keywords: snakebites; antivenom; blood coagulation disorder; Russell’s viper; hemorrhage

How to cite this article: Rathnayaka RN, Ranathunga PEAN, Kularatne, SAM. Pulmonary haemorrhage following Russell’s viper (Daboia russelii) envenoming in Sri Lanka. Asia Pac J Med Toxicol 2020; 9(2):72-76.

INTRODUCTION

Sri Lanka is home to four species of snakes in the family Viperidae. They can be divided into 2 groups: true vipers and pit vipers. True vipers include Russell’s viper (Daboia russelii) and the saw scaled viper (Echis carinatus), and pit vipers include the hump-nosed viper (Hypnale spp.) and Sri Lankan Green pit viper (Trimeresurus trigonocephalus). Of these 4 species, Russell’s vipers and hump-nosed vipers are deadly venomous and are included in the WHO Category 1 classification of snakes, meaning antivenom is required [1]. In Sri Lanka, Russell’s viper is responsible for 30-40% of all venomous snakebites [2] and the majority of deaths are caused due to its bite [3]. Its envenoming causes systemic manifestations such as venom-induced consumption coagulopathy (VICC), neuroparalysis and acute kidney injury (AKI) [4],[5]. There are three broadly classified pulmonary manifestations in snakebites: generalized neuromuscular paralysis affecting airway and respiratory muscles, pulmonary edema, and pulmonary hemorrhage or thrombosis due to VICC [6]. Respiratory paralysis and pulmonary edema are due to either elapid [7] or, rarely, viper bites, [4] whereas VICC complicating pulmonary hemorrhage are widely caused by viper envenoming. We report a patient who presented with neuromuscular, AKI and severe form of VICC, which manifested as pulmonary hemorrhage and hematuria, following a Russell’s viper bite. The patient completely recovered after 23 days of treatment including intensive care management.

CASE PRESENTATION

A 30-year-old previously well, married male was transferred from a local hospital to a tertiary care centre for further management of a snakebite. He was bitten by a snake around...
1930 h on his left foot while walking on a footpath and the snake was identified as Russell’s viper. On admission, he had mild local pain, moderate swelling and two fang punctures on the dorsum of foot, 17 mm apart (Figure 1). Twenty minutes whole blood clotting test (WBCT20) was negative (<20 min) on admission.

As he developed vomiting with bilateral ptosis and external ophthalmeplegia 2 hours after the bite, he was administered 20 vials of polyvalent antivenom after giving intravenous hydrocortisone 400 mg, chlorpheniramine 10 mg and subcutaneous adrenaline 0.25 mg as bolus doses. Halfway through the antivenom infusion, he developed shortness of breath, rhonchi in the lungs, low blood pressure (BP 84/62 mmHg) and Bradycardia (heart rate 42 beats/min). Immediately, antivenom infusion was stopped and adrenaline 0.5 mg was administered intramuscularly. After vital parameters became normal, the infusion was restarted. His WBCT20 was positive 3 hrs after the bite, and was associated with hematuria. He developed respiratory failure around 6 hrs post bite with low oxygen saturation, shortness of breath, restlessness and bleeding from gums. He was immediately intubated, another 10 vials of antivenom were started and was transferred to the intensive care unit for mechanical ventilation. There was laryngeal edema associated with bleeding seen during intubation.

He was kept on synchronized intermittent mandatory ventilation (SIMV) mode with sedation and paralysis for 48 hrs. On day 2, another 10 vials of antivenom were administered due to persistent incoagulable blood associated with blood stained endotracheal tube secretions. On day 2, patient developed ischemic changes on his ECG (T wave inversions on V1-V5) and the 2D-echocardiogram showed 45% ejection fraction with global hypokinesia. He also had oliguria associated with elevated blood urea and creatinine levels (Figure 2) for which furosemide 5 mg/hour IV infusion was started. WBCT20 was negative from day 3 onwards. Patient was extubated on day 5 after getting T piece ventilation. He then developed hemoptysis. High-resolution computed tomography (HRCT) of chest was performed and confirmed pulmonary hemorrhage (Figure 3). On day 9, patient had severe pain in his right leg. A venous duplex study was done and showed deep vein thrombosis (DVT) of right leg extending from external iliac vein to popliteal vein, and soft tissue edema in bilateral lower limbs (Figure 4). Low molecular weight heparin infusion (18 IU/Kg/hour) was started for DVT and continued for 3 days and then warfarin 5 mg daily. In addition, clindamycin 600 mg IV 4 times a day and piperacillin tazobactam 4.5 g three times a day were

Figure 1. Site of bite (left foot) on day 2 of snakebite (indicated by arrows)

Figure 2. Daily changes of hemoglobin, platelet counts, creatinine and creatine phosphokinase levels
administered. Laboratory findings throughout hospital stay are shown in Table 1. On day 17, when the DVT was resolved, the patient was transferred to the medical ward. On day 23, he was discharged and followed up in a medical clinic for the DVT.

DISCUSSION
The life-threatening complications due to VICC caused by Russell’s viper envenoming are intracranial bleeding [8] and pulmonary hemorrhage [9]. The venom of *Daboia russelii* contains hemotoxins which cause VICC and hemorrhages [10], such as basic coagulant metalloprotease (RVBCMP), snake venom serine proteinase (SVSPs), snakec (SCLs), and L-amino acid oxidase (LAAOs). RVBCMP is organ specific and has a direct action on lung microvasculature, which leads to pulmonary hemorrhage [11]. The hemotoxins do not induce bleeding equally in all human organs [12] which may be due to differences in the biochemical nature of the vascular wall. In mouse model, the venom has in-vitro hemorrhagic like activity in lungs, liver, kidneys, brain and heart [13]. Pulmonary hemorrhage following snake envenoming is a rare complication and is exclusively due to viper bites. Other snakes that cause fatal pulmonary hemorrhage include *Bothrops* species endemic to Central and South America [14],[15] and hump-nosed pit vipers (*Hypnale hypnale*) of Sri Lanka [16]. There is recent evidence of the Australian eastern brown snake (*Pseudonaja textilis*) causing fulminant pulmonary hemorrhage in dogs [17]. It was found that jararhagin, a metalloproteinase from *Bothrops jararaca* induces lung hemorrhage [15]. Other pulmonary effects such as acute respiratory distress syndrome (ARDS) and pulmonary edema following snakebites are rarely reported. However, pulmonary edema was found upon autopsy examination following Russell’s viper bites [18] and hump-nosed viper (*Hypnale zara*) bites [19].

Pulmonary hemorrhage is acute bleeding or oozing of blood from the respiratory tract. Diffuse alveolar hemorrhage occurs due to widespread disruption of alveolar-capillary basement membranes, which leads to blood collecting within the alveoli. This may clinically manifest as hemoptysis, dyspnea, tachypnea and airspace opacities in radiological images. Our patient on day 1 may have had pulmonary hemorrhage, which could explain why he had bleeding from the laryngeal outlet upon intubation, and blood stained secretions from the endotracheal tube. After extubation on day 5, he also had hemoptysis and HRCT of the chest confirmed the possibility of pulmonary hemorrhage (Figure 3). He had high creatine phosphokinase (CPK) levels,
Table 1. Laboratory findings of the patient

<table>
<thead>
<tr>
<th>Investigation</th>
<th>Reference range</th>
<th>Days from the snakebite</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (x10^3/μL)</td>
<td>4-11</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>Neutrophils (%)</td>
<td>50-70</td>
<td>26 27 20 13 13 15 13 16 20 19 18</td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>11-16</td>
<td>12.7 13.4 11.9 10.7 11.1 9.7 10.2 9.6 9.6 9.3 8.1 8.3</td>
</tr>
<tr>
<td>Platelets (x10^3/μL)</td>
<td>150-450</td>
<td>238 253 168 158 185 170 168 143 156 220 266 365</td>
</tr>
<tr>
<td>PT (sec.)</td>
<td>10-15</td>
<td>>80/12 19/12 16/12 15/12 14/12 18/12 14.6/12 14/12 15.8/12 28/12 20.9/12 15.3/12</td>
</tr>
<tr>
<td>INR</td>
<td>1 - 1.4</td>
<td>> 6 1.59 1.35 1.25 1.17 1.51 1.22 1.11 1.32 2.37 1.76 1.2</td>
</tr>
<tr>
<td>APTT (sec.)</td>
<td>25 - 30</td>
<td>>60/32 35/32 26/32 32/32 32/32 25/32 31.6/32 33/32 32/32 56/32 38.4/32 44/32</td>
</tr>
<tr>
<td>Na⁺ (mmol/L)</td>
<td>135-145</td>
<td>144 141 146 146 150 150 144 142 139 140 138 141</td>
</tr>
<tr>
<td>K⁺ (mmol/L)</td>
<td>3.5 – 4.5</td>
<td>3.4 6.7 4.5 3.8 3.9 4.7 4.2 4.1 4.3 4.1 4.4</td>
</tr>
<tr>
<td>Creatinine (μmol/L)</td>
<td>60-115</td>
<td>153 231 284 236 212 212 177 163 142 144 119 107</td>
</tr>
<tr>
<td>Blood urea (mmol/L)</td>
<td>7.8-20.1</td>
<td>6.7 11.7 15.8 18.1 23 22.3 15.2 16 14 10 9 8</td>
</tr>
<tr>
<td>SGOT (AST) [U/L]</td>
<td>0 - 35</td>
<td>128 208 235 160 154 106 89 63 50 42 56 80</td>
</tr>
<tr>
<td>SGPT (ALT) [U/L]</td>
<td>0 - 45</td>
<td>38 46 51 47 54 47 50 42 36 30 23 48</td>
</tr>
<tr>
<td>T.Bilirubin (μmol/L)</td>
<td>5 - 21</td>
<td>17 7.2 8.3 9.7 11.3 10.3 12.9 10.5 10.7 9 4.6 6</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>< 6</td>
<td>9 201 234 257 189 116 128 192 168 136 117</td>
</tr>
<tr>
<td>CPK (U/L)</td>
<td>26-174</td>
<td>13024 6818 6327 3125 1468 1464 191</td>
</tr>
<tr>
<td>PCO₂ (mmHg)</td>
<td>35-40</td>
<td>30 36 45 42 44 35 28 31 28 24 29 24</td>
</tr>
<tr>
<td>PO₂ (mmHg)</td>
<td>100</td>
<td>111 120 149 131 130 111 115 83 84 158 66 71</td>
</tr>
<tr>
<td>FiO₂</td>
<td>100</td>
<td>100 100 60 60 40 21 60 60 40 21 21 40</td>
</tr>
<tr>
<td>PO₂/FiO₂</td>
<td>111.4</td>
<td>120 248 219 324 525 192 138 210 757 318 177</td>
</tr>
</tbody>
</table>

which gradually decreased (Figure 2D), suggesting rhabdomyolysis, a known complication in Russell’s viper envenoming [5]. Also, the patient had elevated levels of creatinine and blood urea (Figure 2C), though normal urine output was maintained with a furosemide infusion. There was no metabolic acidosis seen in arterial blood gas analysis and serum potassium levels were also normal throughout except day 2, therefore, he did not need hemodialysis. Due to pulmonary hemorrhage, hemoglobin level persistently decreased (Figure 2A) and the patient had venom-induced thrombocytopenia (Figure 2B). However, peripheral blood microscopy showed no evidence of microangiopathic hemolysis. He also had cardiac toxic effects manifested as ischemic changes on the ECG and impairment of ejection fraction with global hypokinesia.

Snakebite has a significant impact on human health and economy through treatment-related expenditures and loss of productivity [20]. Early administration of anti-venom has been accompanied by significant improvement in outcomes [21]. This index case history conveys the deadly nature of vipertid snake venom which results in fatal systemic bleeding to vital organs.

CONCLUSION

Severe fatal systemic manifestations like pulmonary hemorrhage may rarely occur following Russell’s viper bites. These patients need mechanical ventilation with intensive care treatment and prolonged hospital stay. Early elective intubation is beneficial and antivenom is the mainstay of management.

ACKNOWLEDGEMENT

We thank Consultant Physician (Dr.K.D.M. Kumarasinghe), Respiratory Physician (Dr.N. Dissanayaka), Anesthetists (Dr.R. Jayathilaka, Dr.J.J. Wanigaratne), medical officers and staff of Intensive Care Unit, Teaching Hospital, Ratnapura, Sri Lanka.

Conflict of Interest: None to be declared.

Funding and Support: None.

REFERENCES

17. Leong OS, Padula AM, Leister E. Severe acute pulmonary haemorrhage and haemoptysis in ten dogs following eastern brown snake (Pseudonaja textilis) envenomation: Clinical signs, treatment and outcomes. Toxicon. 2018;150:188-194

